Clinical report of the spinose ear tick, *Otothius megnini* (Acari: Parasitiformes: Argasidae), from a domestic cat, *Felis silvestris catus*, and first record from Northwest Arkansas

Skvarla, M.J.*1, G. E. Evans2, J. R. Fisher1, A. P. G. Dowling1

1Department of Entomology, 319 Agriculture Building, University of Arkansas, Fayetteville, AR, 72701
2Pet Protection Clinic, 2087 South School Ave., Fayetteville, AR 72701

*Corresponding author email: mskvarla36@gmail.com

Received: 24-VIII-2015 Accepted: 02-XI-2015

Abstract: We provide a brief overview of the spinose ear tick, *Otothius megnini* (Dugès 1884) (Acari: Parasitiformes: Argasidae), describe a clinical case from a domestic cat, *Felis silvestris catus* L. 1758, and report the species for the first time from Northwest Arkansas.

Key Words: Soft tick

Introduction

Spinose ear tick, *Otothius megnini* (Acari: Parasitiformes: Argasidae) (Fig. 1), is a single-host soft tick that parasitizes mammals, particularly domestic cattle (Cooley and Kohls 1944, Hoskins and Cupp 1988), though it has been collected from a wide variety of native and domestic animals (Table 1). Spinose ear ticks are native to North America west of the 97th meridian (USA: Bishopp and Trembley 1945, Cortinas and Spomer 2014, Canada: Rich 1957, Mexico: Hooker et al 1912, Valdez 1923, Hoffman 1930, Hoffmann 1962) but have spread to eastern North America (Reeves et al 2002, Goddard 2006) and Hawaii (Abbott 1941), as well as around the world (Africa: Bedford 1912, MacLeod et al. 1970, Horak and Matthee 2003, Horak et al 2010, India: Kingston 1936, Sri Lanka: Diyes et al. 2014, Australia: Mayberry 2003), probably through infested livestock shipments (Bowman et al. 2002). Populations in Central (Hoskins and Cupp 1988) and South America (Argentina: Aragao 1935, Brazil: Pinto 1930, Peru, Bolivia, Chile: Rich 1957) have been hypothesized to introduced as well, however, considering the known range is now nearly continuous between North and South America, they may be naturally occurring there and further investigation into population genetics is needed.

Larvae and nymphs feed on blood inside the ears of infested animals while adults are non-feeding and live off host. Larva feed for one to two weeks while nymphs feed for one to seven months (Imos 1918). After feeding, nymphs drop off the host and crawl to a secluded location, such as cracks in trees, fences, or buildings, where they molt into adults, mate, and lay eggs (Imos 1918).

Nymphal feeding in domestic animals can cause enough pain for animals to develop a number of clinical signs, including head shaking, colic, hyperesthesia, tremors and muscle spasms, paralysis, and emaciation (Chandler 1922, Madigan et al 1995, Pecina 2012, Zarate-Ramos et al. 2014). Feeding may cause destruction of the ear canal and tympanic membrane and cause otitis interna (Ballweber 2014) and infested animals might develop secondary microbial infections or acquire maggot infestations in tick feeding wounds (TickApp 2011). Additionally, spinose ear ticks are suspected vectors of *Coxiella burnetii*, the causative agent of Q fever (Hoskins and Cupp 1988).
Acaricide treatment of large areas such as pastures is impractical, though treatment in confined areas such as stables and kennels may help reduce the number of adult ticks and larvae that have not found a host (Ballweber 2014), elimination of protected sites where females can lay eggs may also help decrease populations (Ballweber 2014). When treating individual animals, small infestations might be treated by manually removing the ticks. Pesticides such as avermectins, phenylpyrazoles, thiophosphates, and organophosphates have proven effective control when applied into the ear of infested animals (Drummond et al 1967, Mayberry 2003, Ballweber 2014, Zarate-Ramos et al. 2014). One study investigating systemic biocides found them to be ineffective (Nava and Guglielmone 2009), though further work should be done to characterize common systemic agents in other animals.

Despite a history of being listed as a parasite of domestic cats (e.g., Bedford 1925, Dikmans 1945, Benbrook 1954, Hoffmann 1962, Ivens et al. 1978, Rudolph 1985, Bowman et al. 2002) and passing reports of ticks collected on cats (e.g., Brumpt 1936, Cooley and Kohls 1944, Rich 1957, Smith et al. 1969, MacLeod et al 1970), clinical reports are nonexistent. While clinical signs have not been reported from domestic cats, lions have been reported to develop pruritis (Bowman et al. 2002), although they might be asymptomatic (Munao Diniz et al 1987).

Spinose ear ticks were originally reported in Arkansas from localized populations in three counties (Independence, Izard, and Yell). It was hypothesized that they were introduced and became established during the 1950’s when large herds of Texas cattle were relocated to Arkansas due to severe drought (Lancaster 1973, Lancaster 1984). Subsequent nation-wide survey efforts have consistently reported spinose ear tick from the state (United States Department of Agriculture 1962, 1964, 1965, 1966, 1968, 1969, 1970, 1971, 1972, 1975, 1978, 1988, 1994), though they did not report county or finer scale distribution data. Therefore, this is the first report of *Otobius megnini* from Northwest Arkansas and the first record of the species on a domestic cat in the state.

Materials and Methods

Two specimens were removed from the ears of a domestic cat (*Felis silvestris catus*) (see Clinical Case below).

Literature records of *Otobius megnini* on domestic cats and in Arkansas were found by searching Keirans and Pounds (2013) excellent annotated bibliography.

Stereomicrographs were taken with a Nikon SMZ1500 microscope and Cannon EOS 40D camera attached to the microscope with a Diagnostic Instruments DD20NLT 2.0X camera mount.

Specimens are deposited in the Acarology Collection at the University of Arkansas.

Clinical Case

The patient, Harvey, a 6 year old neutered male domestic short haired feline weighing 10.6 pounds, lives on a cattle farm in Fayetteville, Arkansas. He was first presented to the Pet Protection Clinic and examined on October 23, 2012 for routine annual exam and vaccination for rabies, FVRCP, and feline leukemia. Physical exam was unremarkable with all parameters within normal limits. On examination of the left ear a parasite was noted and extracted in the exam room with the use of a cotton swab. Right ear canal was within normal limits. The parasite was not something routinely seen and since the patient was not bothered by it he was put on topical Revolution® (selamectin) for broad spectrum parasite control. Vaccines were administered and patient was discharged.

Owner inconsistently used Revolution® and the patient was not seen again in the clinic until January 19, 2015. On presentation, patient appeared healthy and all parameters were within normal limits. Upon this visit one parasite was noted in each horizontal ear canal by the second author. Extraction was unsuccessful with a cotton swab as before. Patient was keep overnight and sedated the next morning with Ketamine dose and Valium dose intravenously. Both parasites were removed and taken to the University of Arkansas entomology department for identification where they were determined to be spinose ear ticks (*Otobius megnini*). Patient was given a dexamethasone intramuscular injection (2 mg/ml) for inflammation and started again on topical parasite control using Revolution®. Once the parasites were identified as ticks the patient was switched to Frontline® (fipronil) as it has better efficacy for ticks in comparison to Revolution®.
Discussion

Spinose ear ticks are an important pest of cattle that have been spread around the world through human transport of infested stock. They occasionally infest other animals, including domestic cats, though few clinical reports exist. The lack of clinical reports and the fact that other felids (i.e., lions) exhibit only minor clinical signs suggests domestic cats may exhibit no or only minor clinical signs. The clinical report presented here, while only based on a single patient, supports this hypothesis. This suggests cats associated with cattle production may serve as a host of spinose ear ticks and should be screened when cattle are treated for ticks or if moved to new farms. Additionally, regardless of whether the lack of published clinical reports concerning domestic cats is due to the lack or rarity of infestations, lack of clinical signs, or other causes, we suggest future subclinical cases be reported in order to confirm this hypothesis.

Finally, while spinose ear ticks have been reported from Arkansas for more than fifty years, this is the first occurrence recorded in northwest Arkansas. As it is likely they have been present in the area for many years, this highlights the importance of reporting county-level rather than state-level occurrence data.

Acknowledgments

We thank Harvey's owner, Mrs. Betty Knox, for bringing Harvey in for his examination.
References

Abbott, R. T. 1941. Spinose ear tick is found on cattle in the territory. Hawaii Farm and Home 4: 30.

Imos, M. 1918. The spinose ear tick and methods of treating infested animals. Farmers Bulletin 980, United Stated Department of Agriculture, Washington D.C.

© 2015, Mississippi Entomological Association

Table 1. Non-cattle hosts of *Otobius megnini* and select references.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-tailed</td>
<td>Odocoileus virginianus</td>
<td>Rich 1957, Russell 1967</td>
</tr>
<tr>
<td>Mule deer</td>
<td>Odocoileus hemionus</td>
<td>Rich 1957</td>
</tr>
<tr>
<td>Pronghorn</td>
<td>Antilocapra americana</td>
<td>Cortinas and Spomer 2014</td>
</tr>
<tr>
<td>Bighorn sheep</td>
<td>Ovis canadensis</td>
<td>Cooley and Kohls 1944, Blood 1963</td>
</tr>
<tr>
<td>Domestic sheep</td>
<td>Ovis aries</td>
<td>Cooley and Kohls 1944, MacLeod et al. 1970</td>
</tr>
<tr>
<td>Mountain goat</td>
<td>Oreamnos americanus</td>
<td>Rich 1957</td>
</tr>
<tr>
<td>Barbary goat</td>
<td>Ammotragus lervia</td>
<td>Gray and Pence 1979, Gray 1980</td>
</tr>
<tr>
<td>Llama</td>
<td>Llama glama</td>
<td>Barbará and Dios 1918</td>
</tr>
<tr>
<td>Mule</td>
<td>Equus asinus x E. ferus caballus</td>
<td>Cooley and Kohls 1944</td>
</tr>
<tr>
<td>Collared peccary</td>
<td>Pecari tajacu</td>
<td>Meleney 1975</td>
</tr>
<tr>
<td>Cottontail rabbit</td>
<td>Sylvilagus spp.</td>
<td>Cooley and Kohls 1944</td>
</tr>
<tr>
<td>Jackrabbit</td>
<td>Lepus spp.</td>
<td>Cooley and Kohls 1944</td>
</tr>
<tr>
<td>Coyote</td>
<td>Canis latrans</td>
<td>Eads 1948, Drewek 1980</td>
</tr>
<tr>
<td>Bobcat</td>
<td>Lynx rufus</td>
<td>Meleney 1975</td>
</tr>
<tr>
<td>Lion</td>
<td>Panthera leo</td>
<td>Munaó Diniz et al. 1987</td>
</tr>
<tr>
<td>Ostrich</td>
<td>Struthio camelus</td>
<td>Cooley and Kohls 1944, Hoogstraal 1952</td>
</tr>
</tbody>
</table>
Fig. 1. *Otobius megnini*, dorsal. Specimen removed from the ear of a domestic cat.